Meta-classification: Combining Multimodal Classifiers
نویسندگان
چکیده
Combining multiple classifiers is of particular interest in multimedia applications. Each modality in multimedia data can be analyzed individually, and combining multiple pieces of evidence can usually improve classification accuracy. However, most combination strategies used in previous studies implement some ad hoc designs, and ignore the varying “expertise” of specialized individual modality classifiers in recognizing a category under particular circumstances. In this paper we present a combination framework called “metaclassification”, which models the problem of combining classifiers as a classification problem itself. We apply the technique on a wearable “experience collection” system, which unobtrusively records the wearer’s conversation, recognizes the face of the dialogue partner, and remember his/her voice. When the system sees the same person’s face or hears the same voice, it can then use a summary of the last conversation to remind the wearer. To identify a person correctly from a mixture of audio and video streams, classification judgments from multiple modalities must be effectively combined. Experimental results show that combining different face recognizers and speaker identification aspects using the meta-classification strategy can dramatically improve classification accuracy, and is more effective than a fixed probability-based strategy. Other work in labeling weather news broadcasts showed that metaclassification is a general framework that can be applied to any application that needs to combine multiple classifiers without much modification.
منابع مشابه
Meta-Classification of Multimedia Classifiers
Combining multiple classifiers is of particular interest in the multimedia systems, since there is usually data of very different types/modalities that should be mined or analyzed. Our wearable ‘experience collection’ system unobtrusively records the wearer’s conversation, recognizes the face of the dialog partner and remembers his/her voice. When the system sees the same person’s face or hears...
متن کاملTriggering Memories of Conversations using Multimodal Classifiers
Our personal conversation memory agent is a wearable ‘experience collection’ system, which unobtrusively records the wearer’s conversation, recognizes the face of the dialog partner and remembers his/her voice. When the system sees the same person’s face or hears the same voice it uses a summary of the last conversation with this person to remind the wearer. To correctly identify a person and h...
متن کاملAccurate Person Recognition on Combining Signature and Fingerprint
This paper is addressing the combination of physiological and behavioral biometrics. In this we adopted multimodal approach on combining signature and fingerprint biometrics using feature level fusion with different normalization techniques to improve the performance of multimodal system. Texture features are extracted for fingerprint, pen pressure, azimuth, and altitude features are extracted ...
متن کاملCombining Classifiers in Multimodal Affect Detection
Affect detection where users’ mental states are automatically recognized from facial expressions, speech, physiology and other modalities, requires accurate machine learning and classification techniques. This paper investigates how combined classifiers, and their base classifiers, can be used in affect detection using features from facial video and multichannel physiology. The base classifiers...
متن کاملA Hierarchical Approach to Multimodal Classification
Data models that are induced in classifier construction often consists of multiple parts, each of which explains part of the data. Classification methods for such models are called the multimodal classification methods. The model parts may overlap or have insufficient coverage. How to deal best with the problems of overlapping and insufficient coverage? In this paper we propose hierarchical or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002